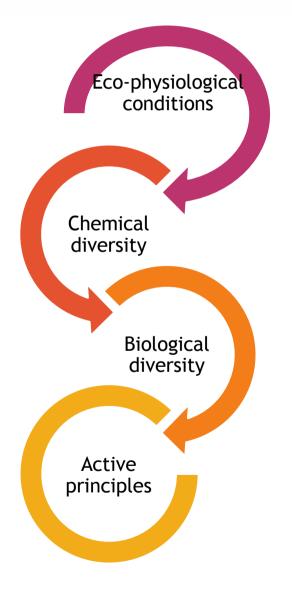


Cooperation to Implement Innovative Methods for the Assessment of Medicinal Plants with Central Roles in Pharmaceutics, Agriculture and Nutrition

EURO-PLANT-ACT

Influence of geolocation on the composition of phytocomplexes


Department of Pharmacy, Health and Nutritional Sciences

Biodiversity

Specie diversity
 Environmental diversity
 Biological diversity

2

Climate- temperaturesoil constitution

different biological activity

Phytocomplex

Synergies or antagonisms of action

Content of active ingredients in dynamic relationship with various factors.

Co-funded by

VERSITY - Vol. 8 (2011)

the European Union Factors, Chemical Composition, and Annominative Properties of Caper Species Growing Wild in Calabria (South Italy)

by Filomena Conforti^a), Silvia Modesto^a), Federica Menichini^a), Giancarlo A. Statti^{*a}), Dimitar Uzunov^b), Umberto Solimene^c), Pierre Duez^d), and Francesco Menichini^a)

^a) Department of Pharmaceutical Sciences, Faculty of Pharmacy, Nutritional and Health Sciences, University of Calabria, I-87036 Arcavacata di Rende (CS) (phone: +390984493063; fax: +390984493298; e-mail: g.statti@unical.it)
^b) Natural History Museum of Calabria and Botanic Garden, University of Calabria, I-87036 Arcavacata di Rende (CS)
^c) Department of Human Morphology and Biomedical Sciences, University of Milano, I-20122 Milano
^d) Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles CP 205/9, Bd du Triomphe, BE-1050 Bruxelles

Biodiversity

Table 1. Collection Sites of Calabrian Caper Samples, Italy

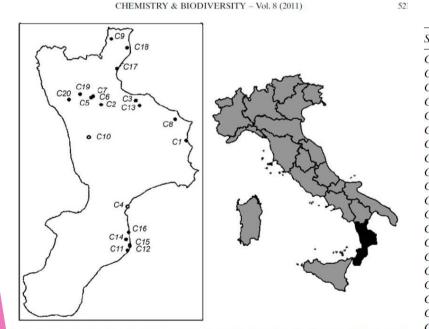
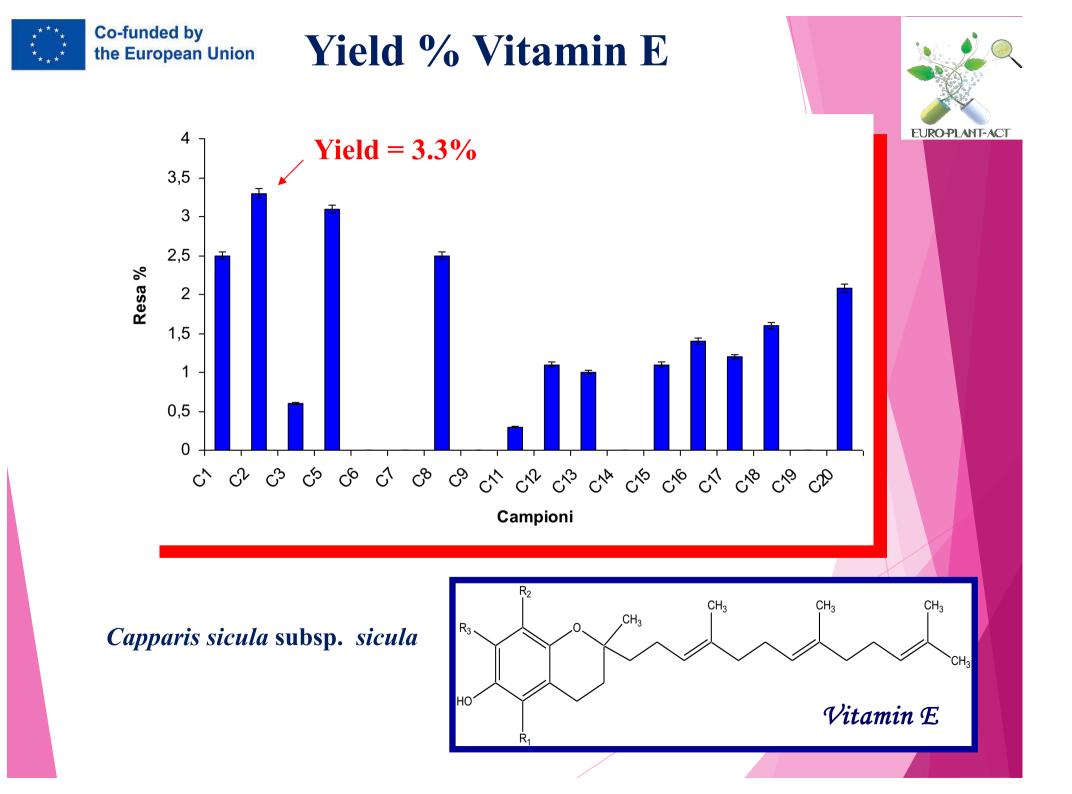
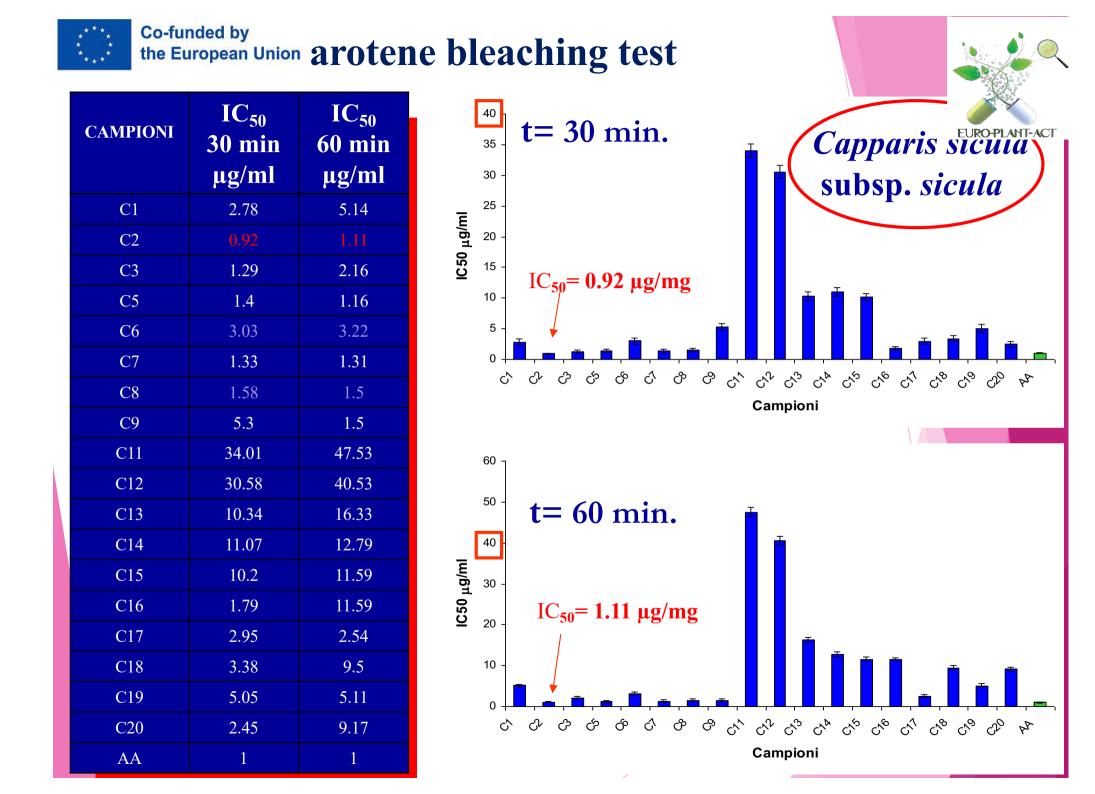


Fig. 1. Map of collection sites of Calabrian caper. ○: Capparis orientalis and ●: Capparis sicula ssp. sicula.

Sample	Collection site	Substrata	Capparis species	
C1	Strongoli, close to road ss 106	Clay soil	C. sicula VEILL. ssp. sicula	
C2	Valley Galatrella	Clay soil	C. sicula VEILL. ssp. sicula	
C3	River Colognati	Calcareous rocks	C. sicula VEILL. ssp. sicula	
C4	Close to Copanello village	Granodiorite sea cliff	C. orientalis VEILL.	
C5	Close to Tarsia village close to cemetery	Clay soil	C. sicula VEILL. ssp. sicula	
C6	Close to Tarsia village close to cemetery	Bricks wall	C. sicula VEILL. ssp. sicula	
C7	Close to Tarsia village	Clay soil	C. sicula VEILL. ssp. sicula	
C8	Castle of Crucoli village	Stony wall	C. sicula VEILL. ssp. sicula	
C9	Close to Oriolo village	Calcareous rocks	C. sicula VEILL. ssp. sicula	
C10	Castle Svevo Cosenza town	Stony wall	C. orientalis VEILL.	
C11	Cape Stilo on the Light house	Stony wall	C. sicula VEILL. ssp. sicula	
C12	Castle San Fili	Stony wall	C. sicula VEILL. ssp. sicula	
C13	Close to Paludi (Rossano) village	Calcareous rocks	C. sicula VEILL. ssp. sicula	
C14	Close to Guardavalle village	Stony wall	C. sicula VEILL. ssp. sicula	
C15	Close to Guardavalle village	Clay soil	C. sicula VEILL. ssp. sicula	
C16	Close to S. Catterina village	Clay soil	C. sicula VEILL. ssp. sicula	
C17	Villapiana village	Clay soil	C. sicula VEILL. ssp. sicula	
C18	River Amendolara	Calcareous rocks	C. sicula VEILL. ssp. sicula	
C19	Close to Roggiano Gravina village	Clay soil	C. sicula VEILL. ssp. sicula	
C20	Close to Malvito village	Granites rocks	C. sicula VEILL. ssp. sicula	

EURO-PLANT-ACT





$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\$	
CI6 CI4 CI1 CI15	

	Collection site	
C1	Strongoli, ss 106 (KR)	cal EURO-PLANT-AC
C2	Vallone Galatrella (CS)	calanchi
C3	Tor. Colognati (CS)	calcar <mark>e</mark>
C4	Copanello (CZ)	diorite, gran <mark>odiorite</mark>
C5	Tarsia cimitero (CS)	calanchi
C6	Tarsia cimitero (CS)	muro, mattoni
C7	Tarsia (CS)	calanchi
C8	Crucoli castello (KR)	muro, pietra c <mark>alce</mark>
С9	Oriolo 550 m.alt. (CS)	calcare
C10	Castello svevo di Cosenza	muro, pietra ca <mark>lce</mark>
C11	Faro Punta Stilo (CZ)	muro, pietra cal <mark>ce</mark>
C12	Castello San Fili (CS)	muro, p <mark>ietra calce</mark>
C13	Paludi (Rossano) (CS)	calcare
C14	Contrada Sic. Guardavalle (CZ)	muro, secco calce
C15	Guardavalle (CZ)	calanchi
C16	S. Caterina (CZ)	calanchi
C17	Villapiana (CS)	calanchi
C18	Fiumara Amendolara	calcare
C19	Roggiano Gravina	calanchi
C20	Malvito (CS)	rocce silicat <mark>iche</mark>

Map Calabria Region

Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants

F. Conforti*, G. Ioele, G.A. Statti, M. Marrelli, G. Ragno, F. Menichini Department of Pharmaceutical Sciences, University of Calabria, 87036 Rende, CS, Italy

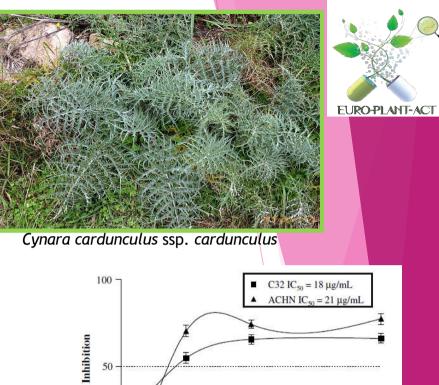


Fig. 1. Geographical location of the field research area in the Calabria region, Italy (latitude 39°44'1", longitude 34°2'18").

Table 1

Latin names, common name, plant part used, collection date of the studied plants

Voucher specimen	Scientific name (family)	Common name	Plant part used	Use in diet	0
CLU 18048	Borago officinalis L. (Boraginaceae)	Borage	Leaves	Mixed soup, boiled, fried	- 0
CLU 18060	Capparis sicula Veill. (Capparaceae)	Caper	Leaves, fruits	Boiled, fried, preserved in olive oil	
CLU 18061	Carduus pycnocephalus L. (Asteraceae)	Italian Thistle	Stems	Boiled, fried	
CLU 18051	Cichorium intybus L. (Asteraceae)	Chicory	Leaves	Boiled, raw in salads	
CLU 18051	Cichorium intybus L (Asteraceae)	Chicory	Roots	Boiled	Fig. 2. Anti
CLU 18047	Clematis vitalba L (Ranunculaceae)	Old Man's Beard	Leaves	Fried	holic extrac
CLU 18059	Cynara cardunculus L. ssp. cardunculus (Asteraceae)	Wild Artichoke	Leaves, capitula	Boiled, fried, roasted, stewed	cells). Value compared v
CLU 18058	Echium vulgare L. (Boraginaceae)	Viper's Bugloss	Leaves, flowers	Boiled	IVIAY 2005
CLU 18057	Foeniculum vulgare Miller ssp. piperitum (Ucria) Cout. (Apiaceae)	Wild Fennel	Leaves	Fried, mixed soup, preserved in olive oil, spice	May 2005
CLU 18053	Lepidium sativum L. (Brassicaceae)	Cress	Leaves	Raw in salads	April 2005
CLU 18056	Malva sylvestris L (Malvaceae)	Mallow	Leaves	Boiled	May 2005
CLU 18055	Mentha aquatica L. (Lamiaceae)	Mint	Leaves	Spice, liqueur	April 2005
CLU 18054	Papaver rhoeas L. ssp. rhoeas (Papaveraceae)	Poppy	Leaves	Boiled	April 2005
CLU 18052	Picris hieracioides L. (Asteraceae)	Hawkweed oxtongue	Leaves	Raw in salads	April 2005
CLU 18050	Raphanus raphanistrum L. ssp. raphanistrum (Brassicaceae)	Radish	Leaves	Boiled, fried, preserved in olive oil, roasted, stewed	May 2005
CLU 18049	Sonchus oleraceus L. (Asteraceae)	Rush crimps	Leaves	Boiled, fried, raw in salads, mixed soup	March 2005

50

0

0%

Fig. 2. Antiproliferative activity of Cynara cardunculus ssp. cardunculus hydroalcoholic extract on ACHN (renal cell adenocarcinoma) and C32 (amelanotic melanoma cells). Values were means \pm SEM of triplicates. p < 0.05 at the analysis of variance, as compared with controls.

50

Concentration µg/ml

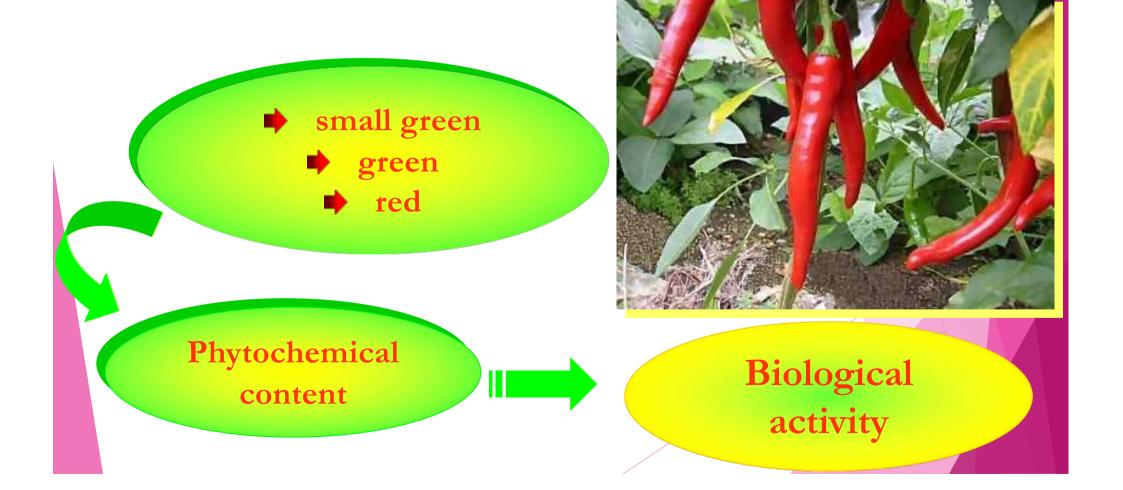
75

100

25

Antiproliferative

Phenolics and Phytosterols


Food Chemistry

www.elsevier.com/locate/foodchem

Chemical and biological variability of hot pepper fruits (*Capsicum annuum* var. *acuminatum* L.) in relation to maturity stage

> Filomena Conforti^{*}, Giancarlo A. Statti, Francesco Menichini Department of Pharmaceutical Sciences, University of Calabria, I-87036 Rende (CS), Italy

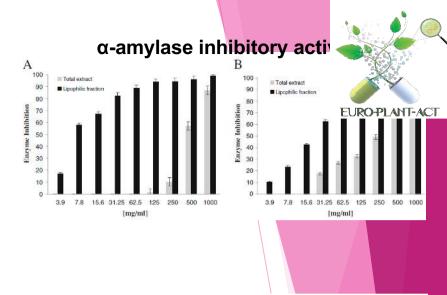
Comparative Study on the Chemical Composition, Antioxidant Properties and Hypoglycaemic Activities of Two *Capsicum annuum* L. Cultivars (*Acuminatum* small and *Cerasiferum*)

Rosa Tundis • Monica R. Loizzo • Federica Menichini • Marco Bonesi • Filomena Conforti • Giancarlo Statti • Damiano De Luca • Bruno de Cindio • Francesco Menichini

Air-dried *capsicum annuum* var. *acuminatum* medium and big: Determination of bioactive constituents, antioxidant activity and carbohydrate-hydrolyzing enzymes inhibition

Rosa Tundis ^a, Monica R. Loizzo ^{a,*}, Federica Menichini ^b, Marco Bonesi ^a, Filomena Conforti ^a, Damiano De Luca ^c, Francesco Menichini ^a

ELSEVIER


LWT - Food Science and Technology 53 (2013) 370-377

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/lwt

Antioxidant and hypoglycaemic activities and their relationship to phytochemicals in *Capsicum annuum* cultivars during fruit development

Rosa Tundis^{*}, Federica Menichini, Marco Bonesi, Filomena Conforti, Giancarlo Statti, Francesco Menichini, Monica R. Loizzo

Table 1

Total phenols, carotenoids, capsaicin and dihydrocapsaicin content in *C. annuum* var. *acuminatum* medium and big.

Phytochemicals	C. annuum var. acuminatum medium	C. annuum var. acuminatum big	
Phenols (mg/100 g dw)	843.7 ± 2.6	748.7 ± 3.7	
Carotenoids (mg/100 g dw)	324.7 ± 1.3	191.7 ± 1.0	
Capsaicin (mg/g dw)	1.4 ± 0.01	0.9 ± 0.02	
Dihydrocapsaicin (mg/g dw)	0.5 ± 0.03	4.7 ± 0.02	

Data represents the mean \pm standard deviation S.D. (n = 3); dw: dried weight.

Table 1

Total phenols, flavonoids, carotenoids, capsaicin and dihydrocapsaicin content of Capsicum annuum cultivars as affected by maturity.

C. annuum cultivars		Phenols (mg CA/ Flavonoids (mg QE/ 100 g of FW) 100 g of FW)	Carotenoids (mg B-C/ 100 g of FW)	Capsaicin (µg/g of FW)	Dihydrocapsaicin (µg/g of FW)	
Fiesta I		781.4 ± 25.8	115.7 ± 11.0	43.8 ± 16.7	677.7 ± 11.4	199.5 ± 10.3
	M	668.6 ± 15.2	34.9 ± 9.8	325.1 ± 29.8	1280.2 ± 44.2	422.5 ± 9.6
Orange Thai	1	941.2 ± 31.1	107.6 ± 5.5	56.0 ± 21.3	315.5 ± 12.9	242.9 ± 14.7
	M	679.6 ± 29.8	61.5 ± 13.4	181.0 ± 9.9	1043.1 ± 35.5	855.0 ± 18.8
Acuminatum	1	951.2 ± 12.6	93.1 ± 25.9	37.3 ± 12.1	300.1 ± 21.5	100.7 ± 12.5
	M	648.6 ± 22.5	56.8 ± 10.3	414.1 ± 45.6	1167.8 ± 23.1	332.7 ± 11.6
Cayenne Golden	1	1207.5 ± 43.3	110.2 ± 24.5	41.7 ± 15.8	208.3 ± 17.8	196.2 ± 13.5
	M	666.0 ± 27.8	39.0 ± 8.9	130.6 ± 31.2	415.8 ± 12.2	545.8 ± 13.6

Values represent means $(n = 3) \pm S.D.$

E immature stage. M: mature stage.

CA: chlorogenic acid.

QE: quercetin.

β-C: β-carotene. FW: fresh weight.

Co-funded by the European Union

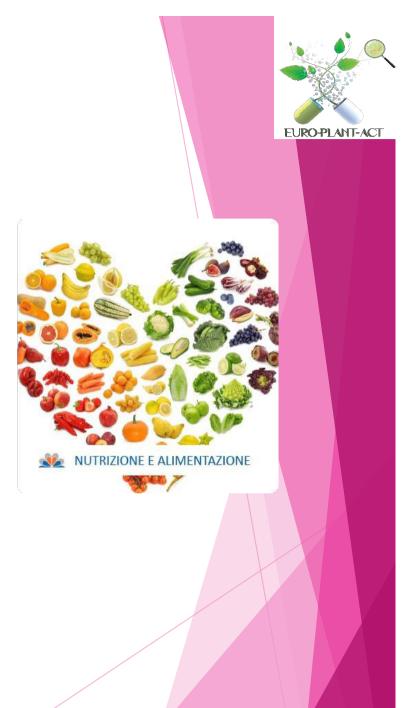
Thank you for your attention

Cooperation to Implement Innovative Methods for the Assessment of Medicinal Plants with Central Roles in Pharmaceutics, Agriculture and Nutrition

FURO-PLANT-ACT

Interactions between supplements/foods and drugs

Department of Pharmacy, Health and Nutritional Sciences

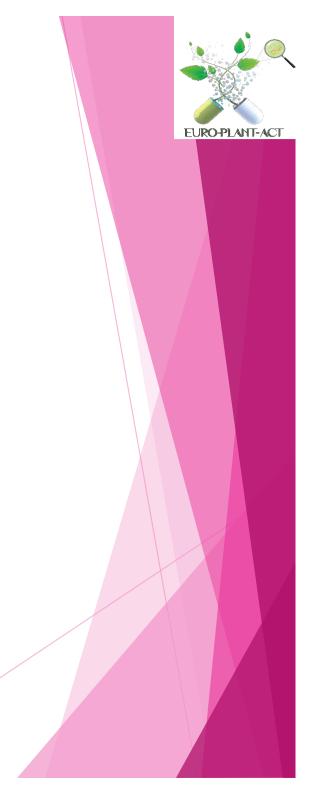


DEFINITION OF NUTRITION

<u>Nutrition</u> is the set of processes by which the body receives and transforms the nutrients contained in food.

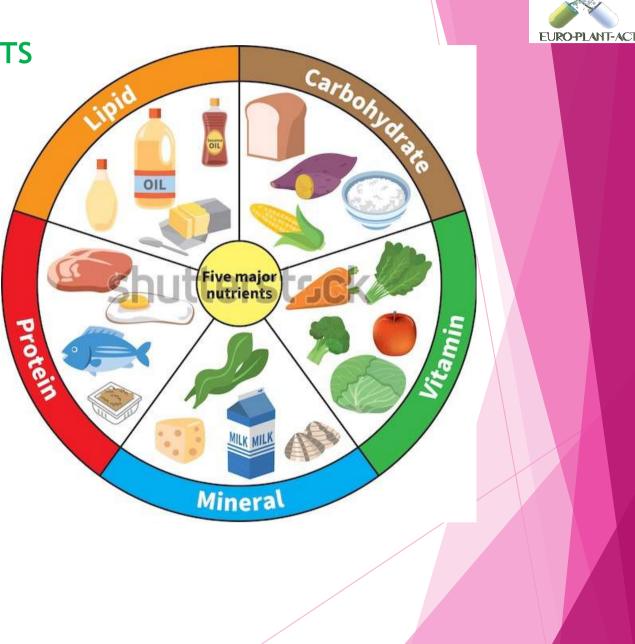
Different from the concept of <u>Supply</u> which expresses the form and methods in which nutrients are supplied to the human body.

Nutrition and basic goals


- Satisfy the body's energy needs in order to carry out life processes (all require energy).
- Meet the growth needs for the maintenance of existing structures.
- Optimize the complex mechanisms of regulation and control of the mentioned processes that require energy or the formation and maintenance of structures.

CONSTITUENTS OF FOOD

- 1) Nutrients
- 2) Antinutrients
- 3) Non nutrients
- 4) Any newly formed substances
- 5) Any contaminants
- 6) Any added substances (additives)



FUNCTIONS OF NUTRIENTS

- PLASTIC function
- **ENERGETIC** function
- PROTECTIVE function

ANTI-NUTRITIONAL SUBSTANCES

They are substances that negatively interfere with the absorption or action of nutrients.

Examples:

- oxalic acid (HOOC COOH, an organic acid contained in some plants) hinders the absorption of calcium, iron and other metal ions,
- 2) avidin (an egg white protein) interferes with the absorption of vitamin B8 (biotin),
- 3) the isothiocyanates (-N = C = S) of crucifers interfere with the absorption of the iodide ion (they are goiters).

Oxalic acid

Oxalic acid (H2C2O4), or oxalate, is a harmful substance found in many foods.

Oxalate is the toxic metabolite of some fungi (such as *Aspergillus niger*), and is contained in high and sometimes dangerous quantities in various plant species such:

HC

- **rhubarb**, alpine or friar rhubarb, false rhubarb;;
- sorrel, or alleluja, and other vegetables of the Oxalis family, from which the name oxalic acid is derived, the quantities contained are really important (about 16% by weight);
- the common phytolacca, also called **amaranth**, sanguinella, Spanish vine; ٠
- spinach and chard, which also contain a significant amount of nitrates;
- Halogeton glomeratus, a spontaneous grass of the cold-arid areas of the United States, dangerous for grazing cattle;
- fruits and vegetables, such as potatoes and a particular type of Ribes, *Ribes grossularia*, initially grown on a large scale for its richness in vitamin С.

NON-NUTRITIONAL SUBSTANCES

CH,

They are substances without nutritional value present in food. However, some non-nutritional substances are bioactive and have pharmacological properties (we also speak of "nutritional pharmacology").

Examples:

- 1) fibers (vegetable substances such as cellulose and
- 2) methylxanthines (caffeine, etc.),
- 3) organic sulphides (garlic allyl sulfide).
- 4) Phytochemicals (polyphenols, terpenes, alkaloids)

When you take prescription or over-the-counter (OTC) medications, do you also take a vitamin, mineral, or other dietary supplement? Have you considered whether there is any danger in mixing medications and dietary supplements?

EURO-PLANT-ACT

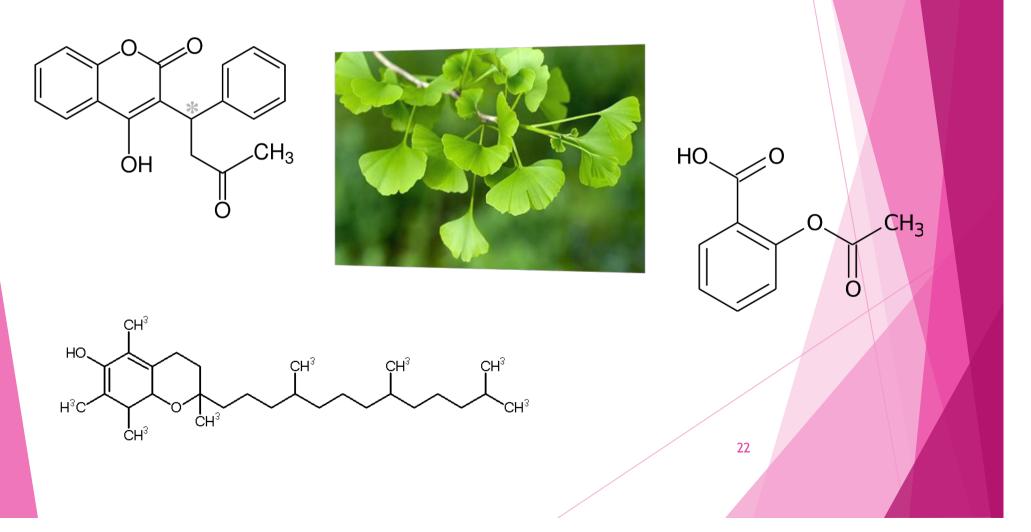
There could be. Certain dietary supplements can change absorption, metabolism, or excretion of a medication. If that happens, it can affect the potency of your medication, which means you may get either too much or too little of the medication you need.

Lon't Assume "Natural" Means Safe

Dietary supplements are widely used and include vitamins, minerals, and other less familiar substances—such as amino acids, botanicals, and botanical-derived ingredients.

Combining dietary supplements and medications could have dangerous and even life-threatening effects.

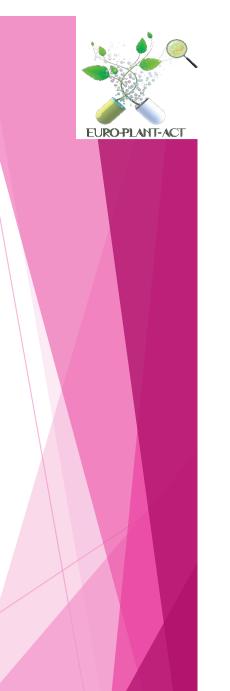
Birth control pills are less effective when taken with St. John's wort, an herbal supplement.



EURO-PLANT-ACT

Warfarin (a prescription blood thinner), ginkgo biloba (an herbal supplement), aspirin, and vitamin E (a supplement) can each thin the blood.

Taking any of these products together may increase the potential for internal bleeding or stroke.


EURO-PLANT-ACT

Precautions for Children and for Those Who Are Pregnant or Breastfeeding

Children, in particular, could be harmed by taking both supplements and medicines. Children's metabolisms are unique, and at different ages they metabolize substances at different rates. For kids, ingesting dietary supplements together with other medications make adverse events a real possibility.

If you're pregnant or breastfeeding, you'll want to discuss any dietary supplements with their health care professional.

Thank you for your attention

