

Co-funded by the European Union

Cooperation to Implement Innovative Methods for the Assessment of Medicinal Plants with Central Roles in Pharmaceutics, Agriculture and Nutrition ERASMUS KA220-HED - Cooperation partnerships in higher education

Project no. 2022-1-RO01-KA220-HED-000088958

Co-funded by the European Union

Toxicological aspects of plant products used as food supplements

CO-UMFVBT

INTRODUCTION

What Are Plant-Based Food Supplements?

- Plant-derived products marketed for enhancing health.
- Includes herbal capsules, tinctures, powders, teas, and essential oils.

Global Use and Popularity:

• \$150 billion global market for dietary supplements, driven by consumer preference for "natural" remedies.

Objective:

• Highlight toxicological concerns and discuss safety strategies.

Categories of Plant Products

Whole Plant or Parts:

• Example: Aloe vera (leaves), Ginseng (roots).

Standardized Extracts:

• Example: Curcumin (turmeric extract), Green tea polyphenols.

Essential Oils:

• Example: Tea tree oil (antimicrobial), Clove oil (antioxidant).

Phytochemical Isolates:

• Example: Resveratrol, Berberine.

Functional Powders and Teas:

• Example: Matcha, Spirulina, Ashwagandha.

Potential Toxicological Risks

Intrinsic Toxic Compounds:

•Naturally occurring toxicants in plants:

•Pyrrolizidine alkaloids (e.g., found in borage): Hepatotoxic.

•Saponins in fenugreek: GI irritation at high doses.

Heavy Metals:

•Common contaminants in soil and plants:

•Lead, arsenic, mercury in Ayurvedic products.

Microbial Contamination:

Mold and bacterial contamination during processing:
Aflatoxins in poorly stored herbs.

Adulteration:

•Unlisted synthetic drugs or toxic plants in supplements:

•Example: "Weight loss supplements" contaminated with sibutramine.

Drug Interactions:

•Potential interactions with pharmaceuticals:

•St. John's Wort: Reduces efficacy of oral contraceptives and antidepressants.

Case Studies

Aristolochic Acid in Herbal Remedies:

- •Found in Aristolochia species (used for traditional medicine).
- •Toxicological Concerns:
- •Nephrotoxicity: Chronic kidney disease.
- •Carcinogenicity: Linked to upper urinary tract cancers.
- •Outcome: Banned in many countries.

Ephedra (Ma Huang):

- •Used for weight loss and athletic performance.
- •Toxicological Concerns:
- •Cardiovascular Effects: Hypertension, heart attack, and stroke.
- •Outcome: FDA banned its use in 2004.

Green Tea Extract:

- •Popular antioxidant supplement.
- •Toxicological Concerns:
- •Hepatotoxicity: Cases of liver damage linked to high doses.

Kava Kava:

- •Used as an anxiolytic.
- •Toxicological Concerns:
- •Liver Toxicity: Banned in some European countries due to reports of liver failure.

Factors Influencing Toxicity

Plant Variety and Part Used:

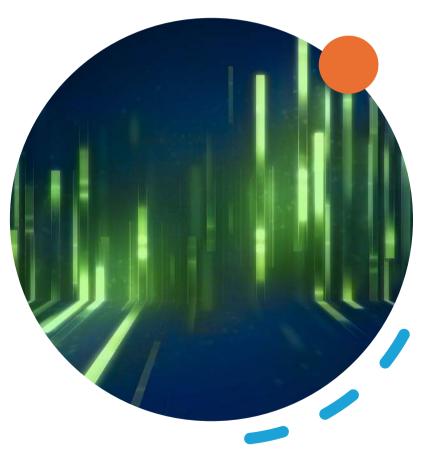
• Example: Raw cassava contains cyanogenic glycosides; improper processing leads to cyanide poisoning.

Processing and Preparation:

- Poor extraction techniques can concentrate harmful compounds:
- Example: Improperly prepared herbal teas may leach tannins, leading to GI issues.

Dose and Duration:

- Even safe plants become toxic in high doses:
- Example: Excess turmeric: Increases risk of kidney stones due to oxalates.


Consumer Demographics:

• Vulnerable populations: Pregnant women, elderly, and children are at higher risk.

Hepatotoxicity:	• Example: Alkaloids (e.g., senecionine) cause liver cell damage.
Neurotoxicity:	• Example: Nutmeg (in large doses) contains myristicin , which causes hallucinations and seizures.
Carcinogenicity:	• Example: Betel nut chewing linked to oral cancer due to arecoline.
Renal Toxicity:	• Example: Aristolochic acid in Chinese herbal teas.
Cardiotoxicity:	• Example: Yohimbine (used for erectile dysfunction supplements) can cause tachycardia and hypertension.

Toxicological Assessment Approaches

In Vitro Studies:

• Cellular models to study cytotoxicity and genotoxicity.

Animal Models:

• Evaluating organ-specific toxic effects and dose responses.

Human Clinical Trials:

• Monitoring adverse effects during and post-study.

Post-Marketing Surveillance:

- Real-world adverse event tracking systems.
- Example: FDA's MedWatch program.

Challenges in Regulation and Safety

Limited Pre-Market Evaluation:

• Unlike pharmaceuticals, many supplements are not rigorously tested.

Labeling Issues:

- Mislabeled or undeclared ingredients:
- Example: Supplements claiming "natural" while containing synthetic drugs.

Unregulated Online Sales:

• Easy availability of unapproved products via e-commerce.

Inconsistent Quality:

• Variable active ingredient levels across batches.

Mitigation Strategies

Regulatory Oversight:

- Strengthen standards for quality, purity, and labeling.
- Example: EU Novel Food Regulation for plant products.

Standardization:

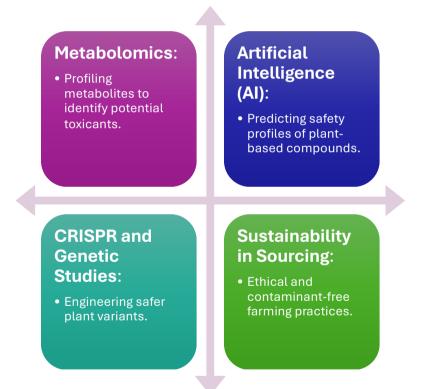
• Ensure consistent levels of active ingredients in products.

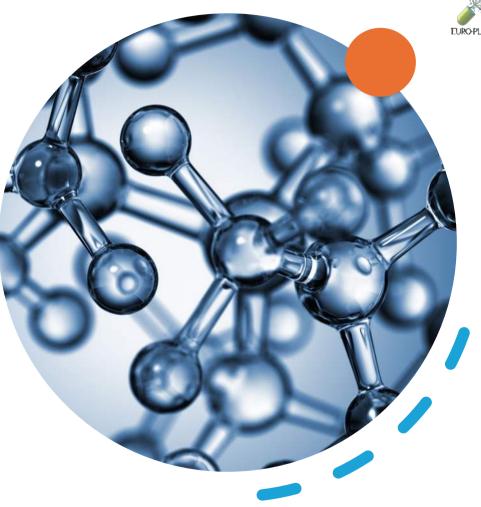
Public Awareness:

• Educate consumers on risks of misuse and unverified products.

Adherence to Dosage:

• Clear labeling for safe consumption limits.


Monitoring Supply Chains:


• Minimize contamination from farming to processing.

Co-funded by the European Union

Future Trends in Toxicological Research

Conclusion

Co-funded by the European Union

Antifungal properties of essential oils against plant pathogens

UNIOS

INTRODUCTION

What Are Essential Oils?

- Volatile, aromatic compounds extracted from plants (flowers, leaves, roots, seeds).
- Rich in bioactive compounds such as terpenes, phenols, and aldehydes.

Why Target Plant Pathogens?

- Fungal diseases cause significant crop losses globally (e.g., rusts, molds, blights).
- Conventional fungicides face challenges like resistance development and environmental toxicity.

Objective:

• Explore the antifungal efficacy of essential oils as eco-friendly alternatives.

Common Fungal Pathogens in Plants

Botrytis cinerea:

• Causes gray mold on fruits and vegetables.

Fusarium spp.:

• Responsible for wilts, root rots, and seedling blight.

Aspergillus spp.:

• Produces aflatoxins harmful to humans and plants.

Alternaria spp.:

• Causes leaf spots and fruit rot.

Penicillium spp.:

• Common post-harvest pathogen.

Essential Oils with Antifungal Activity

Tea Tree Oil (Melaleuca alternifolia):

• Contains terpenes like terpinen-4-ol with strong antifungal properties.

EURO-PLANT-ACT

Thyme Oil (Thymus vulgaris):

• Rich in thymol and carvacrol, effective against Fusarium and Alternaria spp.

Clove Oil (Syzygium aromaticum):

• High eugenol content; effective against Botrytis and Aspergillus spp.

Cinnamon Oil (Cinnamomum verum):

• Cinnamaldehyde inhibits fungal spore germination.

Lemongrass Oil (Cymbopogon citratus):

• Citral and geraniol disrupt fungal cell membranes.

Mechanisms of Antifungal Action

Membrane Disruption:

- Essential oil components interact with lipid bilayers, causing cell leakage.
- Example: Eugenol in clove oil damages fungal cell walls.

Inhibition of Spore Germination:

- Blocks key enzymes required for spore germination and growth.
- Example: Thymol in thyme oil.

Oxidative Stress Induction:

- Generates reactive oxygen species (ROS) that damage fungal DNA and proteins.
- Example: Citral in lemongrass oil.

Inhibition of Enzymes:

- Suppresses fungal enzymes like chitinase and cellulase.
- Example: Cinnamaldehyde in cinnamon oil.

Co-funded by the European Union

ICa(<u>ompara</u> sent Ś

Comparative Efficacy

- Clove Oil: One of the most potent due to high eugenol content; effective against *Candida* and dermatophytes.
- **Thyme Oil**: Highly effective against a wide range of fungi, especially resistant species.
- Tea Tree Oil: Broadspectrum antifungal; effective against *Candida albicans* and *Aspergillus*.
- Lemongrass Oil: Demonstrates strong antifungal activity, especially against dermatophytes.
- Lavender Oil: Moderate efficacy; often used in combination with other oils for synergistic effects.
- Eucalyptus Oil: Effective but slightly less potent compared to clove or thyme oil.

Applications

- Topical Use: Essential oils can be diluted with carriers like coconut oil for treating skin infections.
- Inhalation Therapy: Useful for respiratory fungal infections.
- **Preservatives**: Essential oils are added to food or cosmetics for antifungal preservation.

Summary of Findings

- Clove and thyme oils typically exhibit the highest antifungal efficacy.
- Synergistic combinations of essential oils often outperform single oils.
- Essential oils represent a natural, less resistanceprone alternative to conventional antifungals.

Co-funded by the European Union

Advantages of Essential Oils in Plant Pathogen Control

Eco- Friendly:	Biodegradable and low environmental impact.
Reduced Resistance:	Diverse modes of action limit resistance development.
Safe for Consumers:	Residues are generally recognized as safe (GRAS).
Multi- Functional:	Act as antifungal agents and growth promoters.
Sustainable Agriculture:	Suitable for organic and integrated pest management systems.

Challenges in Using Essential Oils

Volatility:

• Rapid evaporation limits long-term effectiveness in open fields.

Cost:

• High production cost of pure essential oils.

Phytotoxicity:

• High concentrations may harm plants.

Standardization:

• Variation in chemical composition due to plant origin and processing.

Formulation Issues:

• Need for effective delivery systems (e.g., emulsions, nanoformulations).

Innovations in Application

Nano-Encapsulation:

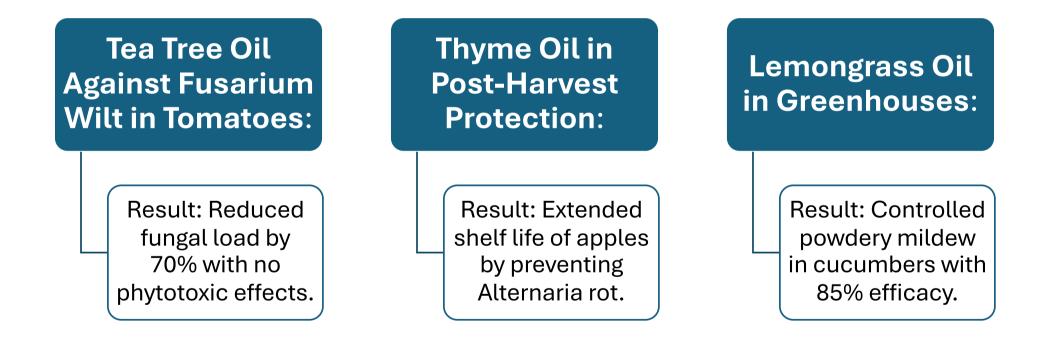
• Protects essential oils from degradation and ensures controlled release.

Biopolymer Coatings:

• Integrates essential oils into plant-safe coatings for seed treatments.

Combination Treatments:

• Synergistic use of essential oils with biocontrol agents like Trichoderma.


Slow-Release Formulations:

• Gels and hydrogels to extend activity in the field.

Case Studies

Future Directions

Integrated Pest Management (IPM):

• Combining essential oils with cultural and biological controls.

Genetic Engineering:

• Developing crops that produce antifungal terpenoids endogenously.

Standardization and Certification:

• Ensuring quality and efficacy of commercial essential oil formulations.

Scalability:

• Enhancing production techniques to reduce costs.

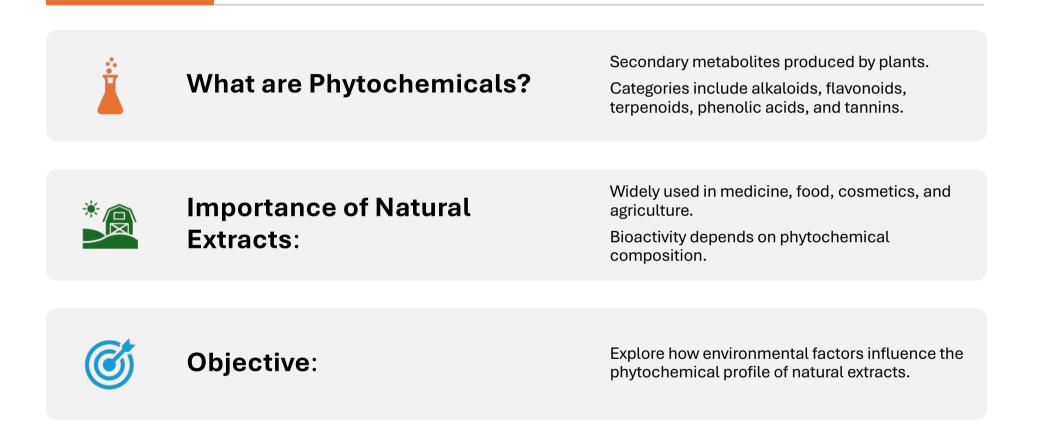
Conclusion

Key Points:

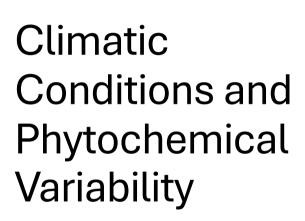
- Essential oils show strong potential as antifungal agents against plant pathogens.
- Their eco-friendly nature supports sustainable agriculture.

Call to Action:

• Invest in research and innovation to overcome current challenges and scale up application.


Influence of environmental factors on the phytochemical composition of a natural extract

INTRODUCTION


Co-funded by the European Union

κey Επνιronmental Factors Impacting Phytochemical Composition

Climatic Conditions:	• Temperature, light intensity, rainfall, and humidity.
Soil Characteristics:	• Nutrient availability, pH, salinity, and microbial activity.
Altitude:	 Impact of oxygen levels, UV radiation, and temperature gradients.
Seasonality:	• Changes in weather and plant life cycles throughout the year.
Stress Conditions:	• Biotic (e.g., pests, pathogens) and abiotic (e.g., drought, pollution) stresses.

Temperature:

• High temperatures increase the synthesis of heat shock proteins and secondary metabolites like phenolic compounds.

EURO-PLANT-AC

• Example: Increased curcumin content in turmeric grown in warmer climates.

Light Intensity:

- UV radiation stimulates flavonoid and anthocyanin production for UV protection.
- Example: Grapes exposed to more sunlight produce higher levels of resveratrol.

Rainfall and Humidity:

- Excess water may dilute active compounds; drought stress increases metabolite concentration.
- Example: Higher essential oil content in rosemary under moderate drought conditions.

Soil Characteristics and Nutrient Availability

Soil Nutrients:

- Nitrogen boosts alkaloid content (e.g., nicotine in tobacco).
- Phosphorus enhances phenolic acid production.

Soil pH:

• Acidic soils favor certain tannins and flavonoids.

Soil Salinity:

• Stress from high salinity increases osmoprotectants like proline and specific phenolics.

Microbial Activity:

• Beneficial microbes promote root health and secondary metabolite production.

Altitude and Its Effects

Temperature Variation:

- High-altitude plants synthesize more phenolic compounds to adapt to cold stress.
- Example: Artemisia species from high altitudes exhibit enhanced artemisinin levels.

UV Radiation:

• Enhanced exposure increases antioxidant phytochemicals like flavonoids.

Oxygen Levels:

• Hypoxia alters metabolite pathways to produce protective compounds.

Seasonality and Phytochemical Composition

Growth Stages:

• Young leaves and buds often have higher concentrations of bioactive compounds.

Harvest Time:

- Timing affects metabolite accumulation:
 - Example: Peppermint harvested in late summer has higher menthol content.

Seasonal Stress:

• Winter dormancy or summer droughts can enhance specific metabolites.

Biotic and Abiotic Stress

Biotic Stress:

- Pest attacks increase alkaloids and phenolics as defense mechanisms.
- Example: Increased capsaicin in chili peppers under pest stress.

Abiotic Stress:

- Drought, salinity, or heavy metals induce stress metabolites like polyphenols.
- Example: Elevated quercetin in onions grown under drought conditions.

Case Studies

Tea (Camellia sinensis):

• High-altitude growth increases catechin and epicatechin levels.

Lavender (Lavandula angustifolia):

• Drought stress enhances essential oil yield and linalool concentration.

Turmeric (*Curcuma longa*):

• Warmer climates boost curcuminoid levels.

Ginseng (Panax spp.):

• Shade-grown ginseng has higher ginsenoside content than sun-grown counterparts.

Co-funded by the European Union

Analytical Techniques to Study Phytochemical Changes

Chromatography:

• High-performance liquid chromatography (HPLC) for identifying and quantifying compounds.

Spectroscopy:

• UV-Vis, NMR, and Mass Spectrometry for structural analysis.

Metabolomics:

• Comprehensive profiling of secondary metabolites to detect environmental influence.

GIS and Remote Sensing:

• Mapping environmental conditions and correlating them with plant quality.

Applications of Environmental Modulation

Optimizing Cultivation:

- Tailor growing conditions for desired phytochemical profiles.
- Example: Controlled irrigation to enhance essential oil content in basil.

Food and Beverage Industry:

- Improving flavor and nutritional quality.
- Example: Higher polyphenols in organic wine grapes.

Pharmaceutical Applications:

• Sourcing plants with higher therapeutic compound concentrations.

Climate-Resilient Agriculture:

• Leveraging environmental stress to improve crop quality.

Challenges and Future Directions

Challenges:

- Complex interactions between multiple environmental factors.
- Lack of standardization in cultivation and extraction.

Future Directions:

- Advanced modeling to predict phytochemical responses to environmental changes.
- Genetic engineering for enhanced metabolite production under specific conditions.
- Sustainable practices to maintain ecosystem health while optimizing yield.

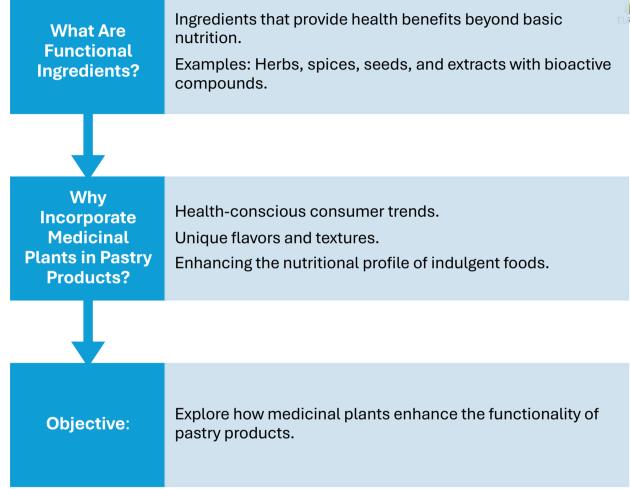
Conclusions

Summary:

- Environmental factors such as climate, soil, altitude, and stress significantly shape the phytochemical composition of natural extracts.
- Understanding these influences is essential for optimizing extract quality and bioactivity.

Closing Note:

• Harnessing environmental variability can lead to sustainable and targeted production of high-value plant products.


Pastry products with medicinal plants as functional ingredients

ROMPAN AND USVT

INTRODUCTION

Benefits of Medicinal Plants in Pastries

PLOTFACT

Health Benefits:

- Rich in antioxidants, vitamins, minerals, and bioactive compounds.
- Example: Turmeric for anti-inflammatory effects.

Unique Flavors and Aromas:

- Herbal infusions bring complexity and appeal.
- Example: Lavender for calming aromatic notes.

Functional Appeal:

• Address specific health concerns like immunity, digestion, and stress.

Market Differentiation:

• Positioning pastries as "healthy indulgences" in a competitive market.

Common Medicinal Plants Used in Pastries

Chamomile:

Applications: Infused in cookies, muffins, and cakes.Benefits: Calming properties, promotes relaxation.

EURO-PLANT-ACT

Lavender:

Applications: Lavender shortbread, scones, and éclairs.Benefits: Stress relief, anti-inflammatory.

Turmeric:

•Applications: Turmeric spice cakes, golden muffins.

•Benefits: Anti-inflammatory and antioxidant properties.

Cinnamon:

•Applications: Cinnamon rolls, buns, and cookies.

•Benefits: Supports blood sugar control and enhances flavor.

Ginger:

•Applications: Gingerbread, ginger cookies, and tarts.

•Benefits: Aids digestion, anti-inflammatory, and antimicrobial.

Rosemary:

Applications: Savory pastries, breadsticks, and crackers.
Benefits: Antioxidant and memory-enhancing properties.

Herb-Infused Muffins:

• Example: Lemon and thyme muffins for a refreshing twist.

Functional Cookies:

• Example: Chamomile and honey cookies as a bedtime snack.

Superfood Brownies:

• Example: Cacao with turmeric for anti-inflammatory benefits.

Medicinal Plant-Filled Croissants:

• Example: Lavender cream or matcha filling for added functionality.

Gluten-Free Pastries:

• Incorporating plant-based flours enriched with medicinal herbs

Production Techniques

PLANT-ACT

Infusion Techniques:

- Soaking herbs in liquids like milk or water before mixing.
- Example: Chamomile-infused milk for cake batters.

Powder Incorporation:

- Adding dried and ground medicinal plants directly to dough or batter.
- Example: Turmeric or cinnamon powders in cookies.

Herb and Spice Extracts:

• Concentrated liquid forms for stronger flavors and functionality.

Direct Incorporation:

- Fresh or dried herbs added for texture and visible appeal.
- Example: Rosemary sprigs in focaccia-style pastries.

Consumer Trends and Market Insights

Demand for Functional Foods:

• Rising preference for natural, plantbased, and health-focused products.

Health-Conscious Consumers:

• Pastries marketed as "better-for-you" indulgences attract a growing audience.

Popular Examples:

- Matcha green tea macarons.
- Turmeric-infused shortbread.
- Digestive biscuits with ginger and fennel.

Challenges in Using Medicinal Plants

PLANT-ACT

Flavor Balancing:

• Strong or bitter flavors may require adjustments.

Stability During Baking:

• Heat may degrade sensitive bioactive compounds.

Cost:

• High-quality medicinal plants can increase production costs.

Allergen Risk:

• Cross-reactivity or consumer allergies to specific herbs.

Regulatory Compliance:

• Ensuring health claims meet legal standards.

Solutions to Overcome Challenges

PLANT-ACT

Blending Flavors:

• Combine strong-flavored herbs with complementary ingredients like honey or citrus.

Encapsulation Techniques:

• Protect heat-sensitive compounds for sustained bioactivity.

Sourcing and Scaling:

• Partnering with local producers to reduce costs and ensure quality.

Labeling and Education:

• Clear information about benefits and potential allergens.

Case Studies

PLANT-ACT

Lavender Honey Cake:

- Combines the calming effects of lavender with natural sweetness.
- Target Audience: Stress-relief seekers.

Golden Turmeric Tart:

- Anti-inflammatory properties of turmeric paired with a sweet crust.
- Popular in wellness cafés.

Chamomile Almond Cookies:

- Relaxation-promoting cookies for evening snacks.
- Marketed as "mindful indulgences."

Future Trends

Personalized Pastry Products:

• Tailored to specific health goals like gut health or immunity.

Hybrid Products:

- Combining traditional baking with global herbal traditions.
- Example: Matcha croissants or moringa muffins.

Functional Bakery Chains:

• Dedicated outlets for health-focused pastries.

Enhanced Bioavailability:

• Use of nanoformulations to improve the efficacy of medicinal compounds.

Conclusions

Key Takeaways:

- Medicinal plants elevate the health and sensory appeal of pastries.
- Addressing challenges like flavor balance and stability is key.
- Functional pastries meet the growing demand for health-conscious indulgences.

Closing Thought:

• The fusion of tradition and innovation is redefining how we enjoy pastries.